skip to main content


Search for: All records

Creators/Authors contains: "Jelonek, Karissa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Unmanned aerial vehicles (UAVs) are becoming more common, presenting the need for effective human-robot communication strategies that address the unique nature of unmanned aerial flight. Visual communication via drone flight paths, also called gestures, may prove to be an ideal method. However, the effectiveness of visual communication techniques is dependent on several factors including an observer's position relative to a UAV. Previous work has studied the maximum line-of-sight at which observers can identify a small UAV [1]. However, this work did not consider how changes in distance may affect an observer's ability to perceive the shape of a UAV's motion. In this study, we conduct a series of online surveys to evaluate how changes in line-of-sight distance and gesture size affect observers' ability to identify and distinguish between UAV gestures. We first examine observers' ability to accurately identify gestures when adjusting a gesture's size relative to the size of a UAV. We then measure how observers' ability to identify gestures changes with respect to varying line-of-sight distances. Lastly, we consider how altering the size of a UAV gesture may improve an observer's ability to identify drone gestures from varying distances. Our results show that increasing the gesture size across varying UAV to gesture ratios did not have a significant effect on participant response accuracy. We found that between 17 m and 75 m from the observer, their ability to accurately identify a drone gesture was inversely proportional to the distance between the observer and the drone. Finally, we found that maintaining a gesture's apparent size improves participant response accuracy over changing line-of-sight distances. 
    more » « less